Cholesterol-Induced Hepatic Inflammation Does Not Underlie the Predisposition to Insulin Resistance in Dyslipidemic Female LDL Receptor Knockout Mice

نویسندگان

  • Nanda Gruben
  • Anouk Funke
  • Niels J Kloosterhuis
  • Marijke Schreurs
  • Fareeba Sheedfar
  • Rick Havinga
  • Sander M Houten
  • Ronit Shiri-Sverdlov
  • Bart van de Sluis
  • Jan Albert Kuivenhoven
  • Debby P Y Koonen
  • Marten H Hofker
چکیده

Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr (-/-)) mice. For this, wild type (WT) and Ldlr (-/-) mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr (-/-) mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr (-/-) mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr (-/-) mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr (-/-) mice suffered from hepatic insulin resistance. While HFC-fed Ldlr (-/-) mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr (-/-) mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice.

OBJECTIVE Obesity is associated with insulin resistance, chronic low-grade inflammation, and atherosclerosis. Toll-like receptor 4 (TLR4) participates in the cross talk between inflammation and insulin resistance, being activated by both lipopolysaccharide and saturated fatty acids. The present study was undertaken to determine whether TLR4 deficiency has a protective role in inflammation, insu...

متن کامل

The Addition of Liquid Fructose to a Western-Type Diet in LDL-R−/− Mice Induces Liver Inflammation and Fibrogenesis Markers without Disrupting Insulin Receptor Signalling after an Insulin Challenge

A high consumption of fat and simple sugars, especially fructose, has been related to the development of insulin resistance, but the mechanisms involved in the effects of these nutrients are not fully understood. This study investigates the effects of a Western-type diet and liquid fructose supplementation, alone and combined, on insulin signalling and inflammation in low-density lipoprotein (L...

متن کامل

Naringenin Prevents Dyslipidemia, Apolipoprotein B Overproduction, and Hyperinsulinemia in LDL Receptor–Null Mice With Diet-Induced Insulin Resistance

OBJECTIVE The global epidemic of metabolic syndrome and its complications demands rapid evaluation of new and accessible interventions. Insulin resistance is the central biochemical disturbance in the metabolic syndrome. The citrus-derived flavonoid, naringenin, has lipid-lowering properties and inhibits VLDL secretion from cultured hepatocytes in a manner resembling insulin. We evaluated wheth...

متن کامل

Myeloid cell-specific ABCA1 deletion does not worsen insulin resistance in HF diet-induced or genetically obese mouse models.

Obesity-associated low-grade chronic inflammation plays an important role in the development of insulin resistance. The membrane lipid transporter ATP-binding cassette transporter A1 (ABCA1) promotes formation of nascent HDL particles. ABCA1 also dampens macrophage inflammation by reducing cellular membrane cholesterol and lipid raft content. We tested the hypothesis that myeloid-specific ABCA1...

متن کامل

Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice.

Intense effort has been devoted to understanding predisposition to chronic systemic inflammation because it contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR) in mice (KODMAC) is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver as well as increasing cytokine secretion and hepatic glucose pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015